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Greenwich and Jahr-Schaffrath® introduced the incapability index Cpp, which is a sim-
ple transformation of the index C},, proposed by Chan et al.® Chen!® considered the
incapability index Cp,, a generalization of Cpp, to handle processes with asymmetric
tolerances. Based on the same idea on Cpp,, we consider a new generalization CJ,,,
which is a modification of the process capability index Cpm. In the cases of symmetric
tolerances, the new generalization CI’,’m reduces to the original index Cpm. The new gen-
eralization C;,’m not only takes the proximity of the target value into consideration, like
those of Cpm and Cp,, but also takes into account the asymmetry of the specification
limits. We compare the new generalization Cj,, with Cpa(1,3) and Cpa(0,4), two spe-
cial cases of Cpa(u,v) recommended by Vannman’ for asymmetric tolerances. We also
investigate the statistical properties of the natural estimator Og,n, assuming the process
is normally distributed. We obtain the exact distribution and an explicit form of the

probability density function of C’;,’m. In addition, we compute the rth moment-expected

!

value, variance of C’;,m, and analyze the bias as well as the MSE of C’gm.

Keywords: Process Capability Index; Target Value; Process Targeting; Asymmetric
Tolerances.

1. Introduction

Process capability indices (PCls), whose purpose is to provide a numerical measure
on whether a production process is capable of producing items satisfying the qual-
ity requirement preset in the factory, have received substantial research attention.
Kane! considered two basic indices C}, and Cpy, and investigated some properties
of their estimators. Boyles? noted that C,, and Cpy are yield-based indices. In fact,
the designs of C}, and Cpi are independent of the target value T', which can fail
to account for process targeting (the ability to cluster around the target). For this
reason, Chan et al.® developed the index Cpm, which takes the process targeting
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into consideration. We note that the index Cpm is not originally designed to pro-
vide an exact measure on the number of nonconforming items. But Cpm includes
the process departure (u — T')% (rather than 6o alone) in the denominator of the
definition to reflect the degree of process targeting. The index Cpy, is defined as

the following:
USL — LSL

6y/02 + (u—T)2’ W
where USL is the upper specification limit, LSL is the lower specification limit, p is
the process mean, ¢ is the process standard deviation, and T is the target value.

Recently, many widely used statistical packages and quality researchers ad-
dressed process capability applying Cpy, for cases in which the specification toler-
ances are asymmetric (see, e.g., Refs. 4 and 5). Boyles® noted that such applications
can either understate or overstate the process capability in many cases (depending
on the position of p relative to T'). A simple generalization of Cpr was proposed to
handle processes with asymmetric tolerances. The generalization shifts one of the
two specification limits, so that the new (shifted) specification limits are symmetric
to the target value T (see Kane' and Chan et al.®). The generalization may be
defined as the following:

Com =

3. /52 - 2’ (2)
vor+(p—T)

where d* = min{D;, D, }, D,, = USL—T, and D; = T—LSL. Obviously, if D,, = Dy,
then T = m = (USL + LSL)/2 and d* = d = (USL — LSL)/2; the specification
tolerance becomes symmetric and the generalization Cy,, defined in Eq. (2) reduces
to the original index Cpm defined in Eq. (1).

We note that this generalization can understate process capability by restricting
the process to a proper subset of the actual specification range, as noted by Boyles.%
For processes E and F with og = op, ug < T, pr > T, satisfying the relationship
|pg —T| = |T— pg| (equal absolute departure), the index values given to processes E
and I are the same. For example, consider the following two processes E and F with
target value T' = {3(USL) + (LSL)}/4, ug = T — 0.5d = m, ur = T + 0.5d = USL,
and og = o = d/6. For the two processes E and F, we have |up —T| = |T — ug| =
0.5d and the same C},,, = 0.316. But, process E is significantly better than process
F, as the expected proportions of nonconforming items are approximately 0% and
50% for processes E and F, respectively. Therefore, the index Cpm inconsistently
measures process capability in this case.

Vinnman”8 investigated a general class of capability indices for processes with
asymmetric tolerances. Vannman’s generalizations have been defined as

*
Com =

d-|p—m|—ulp—T|
3ol tu(p—T)

where u,v > 0. Vinnman’ showed that among many (u,v) values, (u,v) = (1,3)
and (u,v) = (0,4) generate two indices which are most sensitive to process departure

Chalu,v) =




A New Generalization of Cpy, for Processes with Asymmetric Tolerances 385

from the target value. For u > 1, the indices Cpa(u,v) decrease when mean
shifts away from target T in either direction. In fact, Cpa(u,v) decrease faster
when p shifts away from T to the closer specification limit than that to the farther
specification limit. This is an advantage since the index would respond faster to the
shift towards “the wrong side” of T' than towards the middle of the specification
interval (see Ref. 7).

2. A New Generalization CJ,,

Greenwich and Jahr-Schaffrath? introduced the incapability index Cpp = (1/C%)2,
a simple transformation of Cj,,,
tween information concerning the process accuracy and precision while such sep-
arated information is not available with the index Cj,,. Since CY,, inherited the
designs (hence the shortcomings) of Cj,, Cpm does not reflect process incapa-
bility accurately for processes with asymmetric tolerances. Chen!® considered a
generalization of Cyp, defined as CJ, = (A/D)? + (0/D)?, where D = d*/3 and
A =max{d(u — T)/Dy,d(T — n)/D;}, to handle processes with asymmetric toler-
ances. The generalization CJ}, incorporates the asymmetry of the specification tol-
erances D, and Dj, and hence reflects process capability more accurate than Cyp.
Both indices Cy,, and Cfj, measure process incapability, which assume a smaller
value for a more capable process. Based on the same idea on Cll)/p’ we can consider
the following generalization of Cpr, for asymmetric tolerances. The new generaliza-
tion CI’,’m, which assumes a larger value for a more capable process (same as those
of traditional indices Cy,, Cpk, Cpm and Cj,, ), can be defined as

which provides an uncontaminated separation be-

d*
3V ¥ A2

Obviously, if T = m = (USL + LSL)/2 (symmetric tolerance), then d = d*,
A = |p —T|, and the generalization C}, reduces to the original index Cpm. We
note that C;’)/m > 0 for a process with mean falling within the tolerance limits, which
is same as those of the index Cpa(0,4) and the yield-based index Cpx. However,
according to today’s modern quality improvement theories, reduction of variation
from the target is as important as meeting the specifications. The factor A4 in the
definition ensures that the generalization C},, obtains its maximal value at p = T
(process is on target) regardless of whether the tolerances are symmetric (' = m)
or asymmetric (T' # m). Further, for processes E and F with op = or, pg < T,
up > T, satisfying the relationship (up — T')/ Dy, = (T — ug)/D; (equal departure
ratio), the index values given to processes E and F are the same. In fact, the value
of Cy,, decreases faster when p shifts away from T' to the closer specification limit
than that to the farther specification limit. We note that Cpa(1,3) and Cpa(0,4)
also differentiate those changes. In particular, for processes E and F with og = o,
pE = LSL, and pp = USL, the index values of CI’,'m given to processes E and F are
the same, which is the same as those of Cpa(0,4) and the yield-based index Cpk.

(3)

"o
Com =
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Further, for normal processes with ug = LSL and pup = USL, same index values
indicate same expected proportions of nonconforming items in this particular case.

Further, given C]),, > ¢, we can obtain a bound on | — T,

T—{(1-R)/3c}D1 < pn < T+ {(1 - R)/3¢}D.,

where R = |1 —r|/(1 4+ 7), and r = D;/D,.
We note that the indices Cpm, Cpyys Cpa(l,3), and Cj, obtain their maximal
values when the process is on target (x = T'). On the other hand, C,,(0,4) obtains
its maximal value when u is between T and m, or when p =T = m.

Figures 1(a), 1(b), 1(c) and 1(d) display the surface plots of C,,, Cj» Cpa(1,3),
and Cpa(0,4), respectively, for (LSL, T, USL) = (26, 50, 58), 26 < p < 58 and
4 < o < 6. Figures 2(a) and 2(b) display the plots of C};,,, and C},; Figs. 3(a) and
3(b) display the plots of Cpa(1,3) and Cy,,; Figs. 4(a) and 4(b) display the plots of
Cpa(0,4) and Cyp,, for (LSL, T, USL) = (26, 50, 58) and 26 < p1 < 58, with ¢ = 8/3
and o = 16/3, respectively.

We conclude this section with some comparisons of the proposed index C;,;m
with the other indices. First, as we pointed out earlier, Cpm cannot differenti-
ate processes capabilities accurately because the index values of C},, given to two
processes with equal variance and equal absolute departure are the same. The mea-
sure is not reasonable, particularly for processes with asymmetric tolerances. On
the other hand, the index values of CJ, given to processes with equal variance
and equal departure ratio are the same. We note that both processes have equal
average loss in this case. Therefore, we may conclude that CJ, is better than
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Fig. 1. Surface plot for (LSL, T, USL) = (26, 50, 58), 26 < 4 < 58 and 4 < ¢ < 6 of (a) Cpm and
(b) Cgms (¢) Cpal(1,3), and (d) Cpa(0, 4).
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Fig. 1. (Continued)
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Fig. 2. Plot of Cgp, (thin) and Cp, (bold) for (a) (LSL, T, USL) = (26, 50, 58), 26 < u < 58 and
o =8/3 and (b) (LSL, T, USL) = (26, 50, 58), 26 < s < 58 and o = 16/3.
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Fig. 3. Plot of Cpa(l, 3) (thin) and C},, (bold) for (a) (LSL, T, USL) = (26, 50, 58), 26 < u < 58
and ¢ = 8/3 and (b) (LSL, T, USL) = (26, 50, 58), 26 < u < 58 and o = 16/3.
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Fig. 4. Plot of Cpa(0,4) (thin) and Cy, (bold) for (a) (LSL, T, USL) = (26, 50, 58), 26 < pu < 58
and o = 8/3 and (b) (LSL, T, USL) = (26, 50, 58), 26 < u < 58 and o = 16/3.

Cpm based on the criteria of process targeting which is related to process loss.
Second, all the indices Cp,, Cpa(1,3) and Cpa(0,4) decrease faster when p shifts
away from T to the closer specification limit than that to the farther specification
limit. Third, both CJ,,, and Cpa(1,3) obtain their maximal values when the process
is on target (u = T'). Finally, both C, and Cpa(0,4) are no less than zero for
a process with process mean pu falling within the tolerance limits, we note that
yield-based index Cpy also has the property.

3. Estimation of Cy,, and the Sampling Distribution

Let X1, Xo,..., Xn be a random sample taken from a normal distribution N{u, o?)
with mean p and variance o2. To estimate the new generalization Chms
the natural estimator defined as the following:

N d*

= — (4)

- 34/82 + A2 ,

where A = max{d(X — T)/Dy,d(T — X)/D;}, X = (X1, Xi)/n and S2 =
{350, (Xi — X)?}/n, which may be obtained from a process that is demonstrably

we consider
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stable (in control). If the production tolerance is symmetric, then A may be simpli-
fied as | X — 7| and the estimator C’g becomes Cpm = d*/{3[0 (X —T)2%/n]V/?},
the natural estimator of Cp,, discussed by Boyles.? We note that the natural
estimator C';,’m can be rewritten as

- C
Ol = 5
PRSVK+Y (5)
where C = n'/2d* /o, K = nS2%/0?, and Y = [max{(d/D,)Z,—(d/D;)Z}]* with
Z =n}?(X —T)/o. On the assumption of normality, the statistic K is distributed
as xa_1, Z is distributed as N(6,1), 6 = n'/2(u—T) /o, and the probability density
function of Y is

frly) = ( fo(y/dy) + fz<f/d2>), y>0, (6

2
where d; = d/Dy, and dy = d/D,. Therefore, the probability density function of
C”., can be expressed as (see Appendix A)

pm
¢ ot C*1-t)\ (1 CVt
foy, @) = 7 /0 ik <—9x2 ){a‘;fz (——ml)

1 Cvt

We note that the statistic Z2 follows a noncentral chi-square distribution with
one degree of freedom and noncentrality parameter §2. Chen'® defined the dis-
tribution of Y as a weighted noncentral chi-square distribution with one degree
of freedom and noncentrality parameter 6%, under the assumption of normality.
Chen!? also derived the probability density function of Y, in an alternative form of
Eq. (6), as

b(-3) &
fry) = S22 Z{(‘ff” (1+”)2(d2 i y/d2>} y>0,
J

-0 J
(6")

where A = 62 and Y; is distributed as x? +j- Therefore, the probability den-

sity function of C’I’)’m,
Appendix A)

21—n/2cn$—(n+l) X wﬁ) i 2 ii
for, @ = 172 xep : Z ( )ZH)J

i=1

d (3+1) (n 3)/2 (- 1)2ex -C* (1— d_2 ) d
p 1822 y+a;, 'y Yyl

z>0. (7')

in an alternative form of Eq. (7), can be expressed as (see
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If the production tolerance is symmetric (dy = dg = 1), then the probability
density function of Y reduces to the ordinary noncentral chi-square distribution
with one degree of freedom and noncentrality parameter A = 62, and the probability
density function of C’I’,’m becomes

21—n/2cn A 02 oo AC? J
fo4,(@) = i exp (*E"K)Z{(W) /(i (3 J))},
j=

x>0, (8)

which is the probability density function of Cpr (see Ref. 11).

4. Moments

To obtain the rth moment of C’gm, we apply the method used in Pearn et al.? and

Vinnman'® for calculating the moment of Cpp. On the assumption of normality,
since Y follows a weighted noncentral chi-square distribution with one degree of
freedom and noncentrality parameter 6%, and Y is independent with K, then the
rth moment of C’;’m is (see Appendix B)

E(Cl) = (%)T ex;)f/___)

{8 (42)r () /(1)

Jj=0

x{(=1)Y2F1(a,b;¢; 21) + 2 F1(a, by c; 22)} 9)

X

where o Fi{a,b;c; 2;) is the Gaussian hypergeometric function (see, e.g., Ref. 14)
with parameters a = r/2, b= (14+3)/2, ¢ = (n+3)/2,and z; =1 ~d?(i = 1,2). In
particular,

BT = Ce;(i)/é(%%) g{(\/f!é)ir<l—l2—j>r(n—;+j> /r (%)}

x {(=1)72F1(1/2,b;¢; 21) + 2 F1(1/2,b; ¢; 22) }, (10)
2 oxp (— 2
pgy = L2 3) Z{(Cf” (442) /m —2+7>}
=0
x {(=1)Y2F1(1,b;¢; 21) + 2 F1(1,b;¢; 22) } (11)

Var(Clh) = E(Ci)? — E*(Cll) - (12)
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If the production tolerance is symmetric, then z; = 0, o F1(1,b; ¢;0) = 0, and

w6 = (55) 2 R () ()}

i=0

(13)

which is the rth moment of Cpp, (see Ref. 13).
We note that the estimator C}, is biased. The magnitude of the bias is

B(CA'é,’m) =F (CA’I')’m) —Chm- The mean square error can be expressed as MSE(CA'I',’m) =

~

Var(é’{,’nl) + B2(CA'£,’m). To investigate the behavior of the estimator Cy;,,, the bias
and the mean square error are calculated (using Maple V computer software) for
various values of £ = (u —T)/o, d*/o, di = d/Dy, dg = d/D,, and sample size n.
Tables 1, 2 and 3 display the values of B(C‘{,’m) and MSE(CA'I’,’m) for ¢ = —1.0(0.5)1.0,
dy =5/6, dy = 5/4, and n = 10(10)50, with d* /o = 3, 4 and 5, respectively.

The results in Tables 1, 2 and 3 indicate that as [¢| increases, the mean square
error decreases. Further, as the sample size n increases, both the bias and the
mean square error decrease. Figure 5 displays the plot of the bias of Ogm (ver-

sus n) with £ = 1.0, —1.0 and 0 (from bottom to top in the plot) for fixed

Table 1. The values of B(C’f,’m) and MSE(C/y,) for d*/o = 3, ¢ = —1.0(0.5)1.0, di = 5/6,
dz = 5/4, and n = 10(10)50.

£=-10 £=-0.5 =0 £=05 £=1.0
Bias MSE Bias MSE Bias MSE Bias MSE Bias MSE

10 0.0518 0.0321 0.0828 0.0661 0.0787 0.0824 0.0619 0.0631 0.0393  0.0270
20 0.0244 0.0126 0.0394 0.0252 0.0367 0.0320 0.0291 0.0252 0.0185 0.0108
30 0.0160 0.0078 0.0258 0.0153 0.0239 0.0196 0.0191 0.0157 0.0121 0.0067
40 0.0119 0.0056 0.0191 0.0110 0.0178 0.0141 0.0142 0.0114 0.0090 0.0048
50 0.0095 0.0044 0.0152 0.0086 0.0141 0.0110 0.0113 0.0089 0.0072 0.0038

Table 2. The values of B((:"f)’m) and MSE(C‘{,’H,) for d*/o = 4, ¢ = —1.0(0.5)1.0, d1 = 5/86,
dg = 5/4, and n = 10(10)50.

£=-10 £=-05 E=0 £=0.5 £=1.0
Bias MSE  Bias MSE  Bias MSE Bias MSE  Bias  MSE

10 0.0690 0.0571 0.1104 0.1175 0.1049 0.1465 0.0825 0.1122 0.0524 0.0480
20 0.0326 0.0225 0.0525 0.0448 0.0490 0.0568 0.0389 0.0448 0.0247 0.0192
30 0.0213 0.0139 0.0344 -0.0273 0.0319 0.0349 0.0255 0.0279 0.0162 0.0119
40 0.0159 0.0100 0.0255 0.0196 0.0237 0.025% 0.0190 0.0202 0.0120 0.0086
50 0.0126 0.0078 0.0203 0.0152 0.0188 0.0196 0.0151 0.0159 0.0096 0.0068




A New Generalization of Cpm for Processes with Asymmetric Tolerances 393

Table 3. The values of B(C‘;,’m) and MSE(C’;{m) for d*/o = 5, £ = —1.0(0.5)1.0, d1 = 5/6,
d2 = 5/4, and n = 10(10)50. .

£€=-1.0 £=-05 E=0 £=05 £=10
Bias MSE Bias MSE Bias MSE Bias MSE  Bias MSE

10 0.0863 0.0892 0.1380 0.1836 0.1311 0.2289 0.1032 0.1753 0.0655 0.0751
20 0.0407 0.0351 0.0656 0.0700 0.0612 0.0888 0.0486 0.0700 0.0309 0.0300
30 0.0267 0.0217 0.0429 0.0426 0.0399 0.0545 0.0319 0.0436 0.0202 0.0186
40 0.0198 0.0157 0.0319 0.0306 0.0296 0.0392 0.0237 0.0316 0.0150 0.0135
50 0.0158 0.0123 0.0254 0.0238 0.0235 0.0306 0.0189 0.0248 0.0120 0.0105
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Fig. 5. Bias plot of é{,’m (versus n) for d* /o = 3, d1 = 5/6, do = 5/4 with £ = 1.0, —1.0, and 0
(from bottom to top in the plot).
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Fig. 6. MSE plot of C'{,’m (versus n) for d* /o = 3, d1 = 5/6, d = 5/4 with £ = 1.0, —1.0 and 0
(from bottom to top in the plot).

d*/o =3, d; = 5/6, and d2 = 5/4. Figure 6 displays the plot of the MSE of C’{,’m
(versus n) with £ = 1.0, —1.0 and 0 (from bottom to top in the plot) for fixed
d*/o = 3, dy = 5/6, da = 5/4. Combining the results in Tables 1, 2 and 3, we
observe as the value of d*/o increases, both the bias and the mean square error
also increase for fixed dj, dg, £ and n. Figure 7 displays the plot of the bias of C’;,’m
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Fig. 7. Bias plot of C’{,’m (versus n) for £ = 0.5, dy = 5/6, da = 5/4 with d*/o =3, 4 and 5 (from
bottom to top in the plot).
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Fig. 8. MSE plot of C’;’m (versus n) for £ = 0.5, di =5/6, da = 5/4 with d*/o = 3, 4 and 5 (from
bottom to top in the plot).

(versus n) with d* /o = 3, 4 and 5 (from bottom to top in the plot) for fixed & = 0.5,
d; = 5/6 and dy = 5/4. Figure 8 displays the plot of the MSE of égm (versus n)
with d*/o = 3, 4 and 5 (from bottom to top in the plot) for fixed £ = 0.5, dy = 5/6
and dy = 5/4.

5. Conclusions

In this paper, we considered a new generalization Cpm» a modification of the pro-
cess capability index Cpp, to handle processes with asymmetric tolerances. The
new generalization CJ;;, not only takes the proximity of the target value into con-
sideration, like those of Cym and Cp,,, but also takes into account the asymme-
try of the specification limits. We compared Cy,, with Cpa(1,3) and Cpa(0,4),
two special cases of Cp,(u,v) recommended by Vinnman’ for asymmetric toler-
ances. The results show that both CJ,, and Cpa(u,v) decrease faster when p shifts
away from 1" to the closer specification limit than that to the farther specification
limit. In particular, both CJ, and Cpa(1,3) obtain their maximal values when

pm
the process is on target (4 = T'). Furthermore, all values of C%,,, Cpa(0,4), and

pm)
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the yield-based index Cpi are no less than zero for a process with mean p falling
within the tolerance limits. We also investigated the statistical properties of the
natural estimator of Cl’,'m assuming that the process is normally distributed. We
obtained the exact distribution, the rth moment, expected value, and the variance
of the natural estimator C’gm. We also analyzed the bias and the MSE. The new
generalization C)’)’m measures process capability more accurately than the original
index Cpy, and other existing generalizations, which can be implemented straightfor-
wardly. Therefore, the new generalization CJ,,, should be recommended for in-plant
applications.

Acknowledgment

The authors would like to thank the anonymous referees for their helpful comments
and constructive criticisms, which improved the paper. This research was partially
supported by the National Science Council Research Grant NSC88-2213-E-167-001,
Taiwan, R.O.C.

Appendix A

We note that ¥ and K are independent under the assumption of normality. Using
the representation in Eq. (5) conditioning to Y, we obtain the following cumulative
function of C7),:

C
Fay () =1-P —F7r= >
Cpm(if) {3 K1Y -’E}

o c
= 1—/0 P{vK+Y< g}jIY:y}fy(y)dy
C?/(9z%)
_ 1_/0 P{K < C?/(92%) — g} fy(y)dy, =>0. (A1)

The last equality in (A.1) holds since P{K < C?/(9z%) —y} = 0, for y > C?/(92?).
Hence, we have

C?%(92%)
Fop@=1- [ R0 - n)f ). (A2)

pm
Using the representation in Eq. (6), we may obtain

1
2V

x (dilfz(—x/z?/dl) i ;};fzwy/dg)) dy (A3)

Fg

17
pm

%/ (922)
() =1- / Fo(C2/(92%) — y)
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%/ (92?) 2
o @ =[O0 -
1 1
X (zl—l—fz(—\/g/dl) + d_zfz(\/g/dg)) dy. (A4)

Changing the variable t = (3z/C)%y in integral (A.4), we can obtain the pdf of
C’I’,’m, as expressed in Eq. (7).
Using the expression for the pdf of Y in Eq. (6’), we may obtain

Py o) -1 22 -3 Z( (1 +J)Z(_1)ij

=1
2/ (9zd3)
x /0 Fi(C?/(92%) — d2y) fi, (v)dy (A.3)
) _exp(—3) o= (V20Y (14
fcgm(x)— NG jg() ;! ( )Z( 1)°

%/ (922d7)
x / F1(C?/(922) — d24)20%/(95%) fy, (y)dy
0 (A.4)

Changing the variable t = (3xzd;/C)?y in integral (A.4’), we can obtain the pdf of
Cpms as expressed in Eq. (7°).
Appendix B

The rth moment of C’;,’m can be calculated as

E(CL)" = (C/3)"E(K +Y) ™"/

— (/3 exp( 2 i}{ <1;”>}

x {(-1YE[K + d2Y;]™"/? + E[K + d2Y;]7"/?}, (B.1)

where Yj is distributed as xi,;. Let e; = Y;/(K +Y;) and W; = K + Y;. Under
the assumption of normality e; and W; are independent (see Ref. 15 or 13), and
e; is distributed as beta(a, ) distribution with o = (14 5)/2, and 8 = (n — 1)/2.
Further, W is distributed as x?2 +j» & chi-square distribution with (n + j) degrees
of freedom. Therefore,

E(K +vY;)™"/% = E(W;)""2E[1 + (v — 1)e;] /2,

sory -2 (1522) o (15

E[l+ (v~ 1)ej]™"? = 3 Fy(a,b;c; 2)
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where 2F(a, b; ¢; z) is the Gaussian hypergeometric function with parameters a =

r/

2,b=(01+35)/2,¢=(n+j)/2, and z = 1 —v. Combining the results, we can

obtain the rth moment of C}/, as expressed in Eq. (9).
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